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May (1972, 1973) and Hastings (1982a, b, 1983a, b) announced criteria for 
the probable stability or instability, as n]'o~, of systems of n linear ordinary 
differential equations or difference equations with random coefficients fixed 
in time. However, simple, explicit counter-examples show that, without 
some additional conditions, the claims of May and Hastings can be false. 

May ( 1972, 1973) announced criteria for the probable stability or instability 
of a system of  n linear ordinary differential equations with random 
coefficients fixed in time, as n increases to infinity. He gave these criteria 
the ecological interpretation that, as the number  n of  species in an ecological 
community increases, increasingly severe constraints must be imposed on 
the distribution of  the interspecific interaction coefficients to assure the 
stability of  the community.  The constraints could be satisfied, as n increases, 
by reducing either the connectance (the fraction of  interaction coefficients 
that are not zero) or the variance of the non-zero interaction coefficients. 
This interpretation assumed that the interaction coefficients between species 
can usefully be described as random variables fixed in time. May's claims 
attracted attention because they appear to contradict an ecological folk taw 
that increased complexity (measured by the number  n of  interacting species 
or the connectance among them) promotes increased stability. Pimm (1984) 
has comprehensively reviewed the vexed question of  the complexity and 
stability of  ecological systems. 

Recently Hastings (1982a, b, 1983a, b) announced variants and proofs of  
May's claims. 

The purpose of this note is to point out that some simple,, explicit 
counter-examples (Cohen & Newman 1984a) show that May's and 
Hastings's claims are false in the generality with which they are stated. The 
counter-examples are quite robust and include broad sets of  models that 
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fall within the hypotheses of May and Hastings. In the models we have 
constructed, May's and Hastings's announced criteria for stability and other 
assumptions are satisfied but the probability that the system of  differential 
or difference equations is stable does not approach 1 as n increases. In 
another example, based on Hastings's use of, difference equations, the 
announced criteria for instability and other assumptions are satisfied, but 
the probability that the system is unstable approaches zero as n increases. 

By way of  illustration, we shall focus here on one specific claim made 
by Hastings (1982a) and the simplest of  our counter-examples. 

Hastings (1982a) considered the t ime-homogeneous system of  difference 
equations 

x,+ I = Bx,  ( 1 ) 

where x, is a real n-vector and the random n x n matrix B has all elements 
independently and identically distributed and fixed in time. He defined the 
system (1) to be stable if the spectral radius r (B) ,  the largest of  the absolute 
values of  the eigenvalues of  B, is less than 1. 

Hastings supposed that each element Bo of B is 0 with probability 1 - C, 
0_<C_<I, and with probability C is drawn, once and for all, from a 
distribution with mean and all odd moments 0 and variance a 2. The diagonal 
elements of B have the same distribution as the off-diagonal elements of 
B. In the course of his argument, Hastings assumed that, as n increases, a 
is fixed and C = k / n ,  where k is a fixed positive constant. He suggested 
that data justify the assumption that C = k / n  in the context where n is the 
number of  species in an ecological community and B is a matrix that 
describes the species' interactions, which are assumed to be fixed in time. 
Under these assumptions, he claimed that if n C a  2 = n Var B~j < 1 then r(B) < 
1 with probability approaching 1 as nl'oo, while if n C a 2 >  1 then r ( B ) >  1 
with probability approaching 1 as nl'oo. 

For a counter-example to Hastings's claims concerning the stability of  
the system (1), choose any finite positive constant k. Suppose X o, are 
independent  normally distributed real random variables with mean 0 and 
positive variance a 2. Then the probability p that any one of  the X0's exceeds 
1 in absolute value is positive. Let (7, = k / n  and let each element B~j of  the 
matrix B be independently and identically distributed, equal to 0 with 
probability l - C ,  and equal to Xo with probability (7,. We have proved 
that the probability of  instability does not approach 0 as n increases, even 
though we can choose ka  2= nC, ,a2< 1, contrary to Hastings (1982a). 

The assumption in this counter-example that each X~j is normally dis- 
tributed may be replaced by the much more general assumption that each 
Xij has a positive probability of exceeding 1 in absolute value. 
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H. M. Hastings has suggested (personal communication,  January 1984) 
that one can understand such counter-examples to asymptotic stability in 
terms of  the connectedness properties of  the random (directed) graph 
obtained from the matrix B by placing a directed edge from i to j if B u # 0. 

In the spirit of  that suggestion, we note that counter-examples to 
asymptotic instability also follow from certain connectedness properties. 
When each edge occurs with probability k /n  and k < 1, it is known (see 
Cohen & Newman 1984b) that there is, as n ~ oo, a strictly positive probabil- 
ity that the graph contains no (directed) cycles. It is easy to see that the 
corresponding matrix B then has B "  = 0  for a sufficiently large power m 
so that r(B) = 0. It follows that the probability of  stability does not approach 
0 as n increases, even though we can choose ka 2= nC, a'-> 1, contrary to 
Hastings's (1982a) claim concerning asymptotic instability. 

Counter-examples to asymptotic instability which do not require k < 1 
are also possible. In particular, we have constructed (Cohen & Newman 
1984a) a sequence of random matrices B with independently and identically 
distributed elements B u such that l i m , r ~ n V a r B u = o o  while l im, ,~  
P(r(B) < 1)= 1, again contrary to Hastings (t982a). 

Though they fall within the hypotheses of  May and Hastings, our counter- 
examples to their instability claims may be ecologically artificial in that we 
require either that k be less than 1 or else that X 0 can take on very large 
values (with small probability). 

Our counter-examples leave open the possibility that May's conjectures 
may be true under certain conditions as suggested by numerical studies 
(McMurtrie,  1975 and D. E. McClure, personal communication,  June 1984). 

Recently Geman (1984) has given conditions sufficient to prove the 
stability part of  May's conjectures. Specifically, let {bo}, i= 1 ,2 , . . .  , j =  
1 , 2 , . . . ,  be independent  and identically distributed random variables with 
mean zero and finite standard deviation o-. For each n, let B, be the n "< n 
matrix with i,j element b u. Geman shows under  certain hypotheses on the 
moments of  b u that as nToo, the lim sup of  the spectral radius r (B , /n  1/2) 
is less than or equal to o- with probability 1. Robert S. Maier (personal 
communication, September 1984) has informed us without providing details 
that he has established the instability part of  May's conjectures under certain 
conditions. 

We have also analyzed a model, different from that considered by May 
and Hastings, that drops the assumption that the random interaction 
coefficients between species are fixed in time (Cohen & Newman 1984a). 
For some cases of  this model,  which is based on products of  random matrices 
(Furstenberg & Kesten, 1960), stability or instability is determined 
asymptotically by criteria of  exactly the form suggested by May. For other 
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cases o f  this same model ,  criteria different in form from those p roposed  by 
May determine  the stability or  instability o f  the system. 

We agree with this observat ion o f  May (1971): " I n  nature  we deal not  

with arbi t rary complex  systems, but rather  with ones selected by a long and  
intricate p r o c e s s . . .  ; mathemat ica l  theorems tend to deal with general  
complex  systems, which are quite another  mat ter" .  However ,  this is only a 
tendency  o f  mathemat ics ,  not  a requirement .  Our  stability results for prod-  
ucts o f  r a n d o m  matrices may  eventually be extended f rom the case o f  
independen t  matrices to more  realistic s tochast ic  models  with nonl inear  
dynamics  and memory.  

Since early investigations (Gardne r  & Ashby  1970) o f  the stability o f  
r andom systems were mot ivated  by models  o f  the brain, our  analysis o f  
models  with r andomly  fixed and with r a n d o m l y  changing  coefficients may 
be o f  interest in neurob io logy  as well as in ecology.  
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work was supported in part by U.S. National Science Foundation grants DEB80- 
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ity of Mr and Mrs William T. Golden to J.E.C. 
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